If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-98=0
a = 1; b = 0; c = -98;
Δ = b2-4ac
Δ = 02-4·1·(-98)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*1}=\frac{0-14\sqrt{2}}{2} =-\frac{14\sqrt{2}}{2} =-7\sqrt{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*1}=\frac{0+14\sqrt{2}}{2} =\frac{14\sqrt{2}}{2} =7\sqrt{2} $
| x÷2+x+1÷2=2 | | 0.2x+4.5=17x+1.5 | | 5a-18=-12 | | 9a+11=99 | | -25=3(v-5)-8v | | 3(4x+2)+4(2x+1)=50 | | 1230=x+150+x | | -7x=14/5 | | 5/2u=-15 | | 3t^2−14t+21=0 | | -9=-3/4u | | -6y/5=-36 | | 4/3=-2v | | 3/8w=-6 | | -7y/9=-49 | | -3=y+5/8 | | x/(x+313339731)=7.5 | | -5=v-2/9 | | 3.9m-2.1=9.6 | | 4(2h-1)-5=8h-4 | | x+1/6=-2/5 | | Y=1/x+1 | | 4x2–25=37. | | v+7/8=3/4 | | 0.24x×0.42=1.74 | | 4x-2.2=4.2 | | 50+60-250+55x=16650 | | 69=1895483587533x | | 16w^2+40w+25=0 | | 4+y/2.56=6 | | 25x+5-55*2=10000 | | -6y-2(61/34)=-14 |